Statistical and machine learning-driven optimization of mechanical properties in designing durable hdpe nanobiocomposites

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

The selection of nanofillers and compatibilizing agents, and their size and concentration, are always considered to be crucial in the design of durable nanobiocomposites with maximized mechanical properties (i.e., fracture strength (FS), yield strength (YS), Young’s modulus (YM), etc). Therefore, the statistical optimization of the key design factors has become extremely important to minimize the experimental runs and the cost involved. In this study, both statistical (i.e., analysis of variance (ANOVA) and response surface methodology (RSM)) and machine learning techniques (i.e., artificial intelligence-based techniques (i.e., artificial neural network (ANN) and genetic algorithm (GA)) were used to optimize the concentrations of nanofillers and compatibilizing agents of the injection-molded HDPE nanocomposites. Initially, through ANOVA, the concentrations of TiO2 and cellulose nanocrystals (CNCs) and their combinations were found to be the major factors in improving the durability of the HDPE nanocomposites. Further, the data were modeled and predicted using RSM, ANN, and their combination with a genetic algorithm (i.e., RSM-GA and ANN-GA). Later, to minimize the risk of local optimization, an ANN-GA hybrid technique was implemented in this study to optimize multiple responses, to develop the nonlinear relationship between the factors (i.e., the concentration of TiO2 and CNCs) and responses (i.e., FS, YS, and YM), with minimum error and with regression values above 95%.

Original languageEnglish
Article number3100
JournalPolymers
Volume13
Issue number18
DOIs
Publication statusPublished - Sep 2021

Keywords

  • Artificial neural network (ANN)
  • Computational modeling
  • Durability
  • Genetic algorithm (GA)
  • Mechanical properties
  • Polymer–matrix composites (PMC)
  • Statistical optimization

ASJC Scopus subject areas

  • Chemistry(all)
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Statistical and machine learning-driven optimization of mechanical properties in designing durable hdpe nanobiocomposites'. Together they form a unique fingerprint.

Cite this