On Circle Preserving Quadratic Operators

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In the present paper, we study linear operators Δ from the algebra of 2 × 2 matrices M2(C) into its tensor square. Each such kind of mapping defines a quadratic operator on the state space of M2(C). We know that q-purity of quasi quantum quadratic operators (q.q.o.) is equivalent to the invariance of the unite sphere under the corresponding quadratic operator. Therefore, in the paper, we consider quadratic operators, which preserve the unit circle, and show that the corresponding quasi q.q.o. cannot be not positive. Note that this is a much weaker condition than the q-purity of quasi q.q.o. Moreover, we will classify q-pure circle preserving quadratic operators into three disjoint classes (non isomorphic). Moreover, we are able to show that quasi q.q.o. corresponding to the first class is block positive. Note that the block positivity is weaker than positivity. This kind of operator, i.e., not positive but block-positive operator allows us to detect that the given state on M2(C) ⊗ M2(C) is either entangled or not. The obtained results will allow us to verify whether a given mapping is positive or not. This finding suggests us to produce a class of non-positive mappings. Moreover, it will shed some light in finding entanglement states.

Original languageEnglish
Pages (from-to)765-782
Number of pages18
JournalBulletin of the Malaysian Mathematical Sciences Society
Volume40
Issue number2
DOIs
Publication statusPublished - Apr 1 2017
Externally publishedYes

Keywords

  • Anti-symmetric
  • Circle
  • Positive operator
  • Pure
  • Quasi quantum quadratic operator
  • Symmetric

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint

Dive into the research topics of 'On Circle Preserving Quadratic Operators'. Together they form a unique fingerprint.

Cite this