Luminescence quenching of mixed-ligand ruthenium (II) complexes by different quenchers

Nathir A.F. Al-Rawashdeh, Khaled Shawakfeh, Sumaia Khadir

Research output: Contribution to journalArticlepeer-review

Abstract

The effect of ionic strength and acidity (pH) on the luminescence quenching of the excited states of a number of mixed-ligand Ru(II) complexes have been studied. The mixed-ligand Ru(II) complexes of diphenyl-thioethylene (dpte); 2,2-bipyridine (bpy), 2-(2-pyridyl)-quinoline (pyq); 4,6-dichloro-2-(2-pyridyl)pyrimidine (dcppm); 4,6-dichloro-5-methyl-2-(2-pyridyl)pyrimidine (dcmppm); 4,6-dichloro-5-phenyl-2-(2 pyridyl)pyrimidine (dcpppm) with three quenchers: N,N,N′,N ′-tetramethyl-p-phenlyenediamine (TMPD2+), methyl viologen (Mv2+), and ethylenediaminetetraacetic acid (EDTA) have been used to study the effect of acidity. Whereas, for the effect of ionic strength, [Ru(dpte)2(dcpppm)]2+/EDTA system has been used. The quenching rate constant (kq) was found to increase with decreasing the ionic strength, while pH has the opposite effect. The quenching of mixed-ligand Ru(II) complexes by TMPD2+ in aqueous solutions was shown to be dynamic and static in nature.

Original languageEnglish
Pages (from-to)425-436
Number of pages12
JournalActa Chimica Slovenica
Volume49
Issue number3
Publication statusPublished - Sep 1 2002

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint

Dive into the research topics of 'Luminescence quenching of mixed-ligand ruthenium (II) complexes by different quenchers'. Together they form a unique fingerprint.

Cite this