Effects of α- and γ-tocopherols on the autooxidation of purified sunflower triacylglycerols

Maria Dolores Fuster, Anna Maija Lampi, Anu Hopia, Afaf Kamal-Eldin

Research output: Contribution to journalArticlepeer-review

107 Citations (Scopus)

Abstract

The antioxidant effects of α- and γ-tocopherols were evaluated in a model system based on the autooxidation of purified sunflower oil (p-SFO) triacylglycerols at 55°C for 7 d. Both tocopherols were found to cause more than 90% reduction in peroxide value when present at concentrations >20 ppm. α-Tocopherol was a better antioxidant than γ-tocopherol at concentrations ≤40 ppm but a worse antioxidant at concentrations >200 ppm. Neither α- nor γ-tocopherol showed a prooxidant effect at concentrations as high as 2000 ppm. The amount of tocopherols consumed during the course of oxidation was positively correlated to the initial concentration of tocopherols, and the correlation was stronger for α- than for γ-tocopherol. This correlation suggested that, besides reactions with peroxyl radicals, destruction of tocopherols may be attributed to unknown side reactions. Addition of FeSO4, as a prooxidant, caused a 12% increase in the peroxide value of p-SFO in the absence of tocopherols. When tocopherols were added together with FeSO4, some increase in peroxide value was observed for samples containing 200, 600 or 1000 ppm of α- but not γ-tocopherol. The addition of FeSO4, however, caused an increase in the amount of α- and γ-tocopherols destroyed and led to stronger positive correlations between the amount of tocopherols destroyed during oxidation and initial concentration of tocopherols. No synergistic or antagonistic interaction was observed when α- and γ-tocopherols were added together to autooxidizing p-SFO.

Original languageEnglish
Pages (from-to)715-722
Number of pages8
JournalLipids
Volume33
Issue number7
DOIs
Publication statusPublished - 1998
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Organic Chemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Effects of α- and γ-tocopherols on the autooxidation of purified sunflower triacylglycerols'. Together they form a unique fingerprint.

Cite this