Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells

Scott E. VanCompernolle, R. Jeffery Taylor, Kyra Oswald-Richter, Jiyang Jiang, Bryan E. Youree, John H. Bowie, Michael J. Tyler, J. Michael Conlon, David Wade, Christopher Aiken, Terence S. Dermody, Vineet N. KewalRamani, Louise A. Rollins-Smith, Derya Unutmaz

Research output: Contribution to journalArticlepeer-review

121 Citations (Scopus)

Abstract

Topical antimicrobicides hold great promise in reducing human immunodeficiency virus (HIV) transmission. Amphibian side provides a rich source of broad-spectrum antimicrobial peptides including some that have antiviral activity. We tested 14 peptides derived from diverse amphibian species for the capacity to inhibit HIV infection. Three peptides (caerin 1.1, caerin 1.9, and maculatin 1.1) completely inhibited HIV infection of T cells within minutes of exposure to virus at concentrations that were not toxic to target cells. These peptides also suppressed infection by murine leukemia virus but not by reovirus, a structurally unrelated nonenveloped virus. Preincubation with peptides prevented viral fusion to target cells and disrupted the HIV envelope. Remarkably, these amphibian peptides also were highly effective in inhibiting the transfer of HIV by dendritic cells (DCs) to T cells, even when DCs were transiently exposed to peptides 8 h after virus capture. These data suggest that amphibian-derived peptides can access DC-sequestered HIV and destroy the virus before it can be transferred to T cells. Thus, amphibian-derived antimicrobial peptides show promise as topical inhibitors of mucosal HIV transmission and provide novel tools to understand the complex biology of HIV capture by DCs.

Original languageEnglish
Pages (from-to)11598-11606
Number of pages9
JournalJournal of Virology
Volume79
Issue number18
DOIs
Publication statusPublished - Sep 2005
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells'. Together they form a unique fingerprint.

Cite this