Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications

Moh'd Abdalla Oglah Alrefai, Mohamed Ali Hajji

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

In this paper, we study linear and nonlinear fractional eigenvalue problems involving the Atangana-Baleanu fractional derivative of the order 1 < δ < 2. We first estimate the fractional derivative of a function at its extreme points and apply it to obtain a maximum principle for the linear fractional boundary value problem. We then estimate the eigenvalues of the nonlinear eigenvalue problem and obtain necessary conditions to guarantee the existence of eigenfunctions. We also obtain a uniqueness result and a norm estimate of solutions of the linear problem. The obtained maximum principle and results are based on a condition that connects the boundary conditions, the order of the fractional derivative, and the Mittag-Leffler kernel. This condition is different from the ones obtained in previous results with different types of fractional derivatives.

Original languageEnglish
Article number013135
JournalChaos
Volume29
Issue number1
DOIs
Publication statusPublished - Jan 1 2019

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Analysis of a fractional eigenvalue problem involving Atangana-Baleanu fractional derivative: A maximum principle and applications'. Together they form a unique fingerprint.

Cite this